Prokayrotic Ubiquitin-Like Protein (Pup) Proteome of Mycobacterium tuberculosis
نویسندگان
چکیده
Prokaryotic ubiquitin-like protein (Pup) in Mycobacterium tuberculosis (Mtb) is the first known post-translational small protein modifier in prokaryotes, and targets several proteins for degradation by a bacterial proteasome in a manner akin to ubiquitin (Ub) mediated proteolysis in eukaryotes. To determine the extent of pupylation in Mtb, we used tandem affinity purification to identify its "pupylome". Mass spectrometry identified 55 out of 604 purified proteins with confirmed pupylation sites. Forty-four proteins, including those with and without identified pupylation sites, were tested as substrates of proteolysis in Mtb. Under steady state conditions, the majority of the test proteins did not accumulate in degradation mutants, suggesting not all targets of pupylation are necessarily substrates of the proteasome under steady state conditions. Four proteins implicated in Mtb pathogenesis, Icl (isocitrate lyase), Ino1 (inositol-1-phosphate synthase), MtrA (Mtbresponse regulator A) and PhoP (phosphate response regulator P), showed altered levels in degradation defective Mtb. Icl, Ino1 and MtrA accumulated in Mtb degradation mutants, suggesting these proteins are targeted to the proteasome. Unexpectedly, PhoP was present in wild type Mtb but undetectable in the degradation mutants. Taken together, these data demonstrate that pupylation regulates numerous proteins in Mtb and may not always lead to degradation.
منابع مشابه
Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein.
Pup (prokaryotic ubiquitin-like protein) from Mycobacterium tuberculosis is the first ubiquitin-like protein identified in non-eukaryotic cells. Although different ubiquitin-like proteins from eukaryotes share low sequence similarity, their 3D (three-dimensional) structures exhibit highly conserved typical ubiquitin-like folds. Interestingly, our studies reveal that Pup not only shares low sequ...
متن کاملAllosteric transitions direct protein tagging by PafA, the prokaryotic ubiquitin-like protein (Pup) ligase.
Protein degradation via prokaryotic ubiquitin-like protein (Pup) tagging is conserved in bacteria belonging to the phyla Actinobacteria and Nitrospira. The physiological role of this novel proteolytic pathway is not yet clear, although in Mycobacterium tuberculosis, the world's most threatening bacterial pathogen, Pup tagging is important for virulence. PafA, the Pup ligase, couples ATP hydroly...
متن کاملMycobacterium tuberculosis Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates
The protein degradation machinery of Mycobacterium tuberculosis includes a proteasome and a ubiquitin-like protein (Pup). Proteasome accessory factor A (PafA) attaches Pup to proteins to target them for degradation by the proteasome. Free Pup is unstable and never observed in extracts of M. tuberculosis, an observation that led us to hypothesize that PafA may need alternative sources of Pup. He...
متن کامل"Depupylation" of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates.
Ubiquitin (Ub) provides the recognition and specificity required to deliver proteins to the eukaryotic proteasome for destruction. Prokaryotic ubiquitin-like protein (Pup) is functionally analogous to Ub in Mycobacterium tuberculosis (Mtb), as it dooms proteins to the Mtb proteasome. Studies suggest that Pup and Ub do not share similar mechanisms of activation and conjugation to target proteins...
متن کاملA further case of Dop-ing in bacterial pupylation.
protein homeostasis is fundamental to the function of all cellular systems. in eukaryotes, the ubiquitin–proteasome pathway mediates regulated protein degradation. intensive studies of the eukaryotic proteasome over the past decades have unravelled the complexity of this multisubunit, atp-dependent protease, and proteasome inhibitors are now established anticancer drugs (Finley, 2009). prokaryo...
متن کامل